Package 'bridger2'

Title: Genome-Wide RNA Degradation Analysis Using BRIC-Seq Data
Description: BRIC-seq is a genome-wide approach for determining RNA stability in mammalian cells. This package provides a series of functions for performing quality check of your BRIC-seq data, calculation of RNA half-life for each transcript and comparison of RNA half-lives between two conditions.
Authors: Naoto Imamachi [aut, cre]
Maintainer: Naoto Imamachi <[email protected]>
License: MIT + file LICENSE
Version: 0.1.0
Built: 2024-11-18 06:41:14 UTC
Source: https://github.com/imamachi-n/bridger2

Help Index


BridgeR basic function for calculating RNA half-life from BRIC-seq data

Description

BridgeRCore is a basic function for calculating RNA half-life BRIC-seq data and a wrapper of the other individual bridger2 functions.

Usage

BridgeRCore(inputFile, inforColumn = 4, group = c("Control", "Knockdown"),
  hour = c(0, 1, 2, 4, 8, 12), RPKMcutoff = 0.1, cutoffBelow = 0.1,
  YMin = -2, YMax = 2, downsamplingFig = 0.2, makeFig = FALSE,
  cutoffQuantile = 0.975, inforHKGenesRow = "symbol", HKGenes = c("GAPDH",
  "PGK1", "PPIA", "ENO1", "ATP5B", "ALDOA"), CutoffTimePointNumber = 4,
  R2_criteria = 0.9, TimePointRemoval1 = c(1, 2), TimePointRemoval2 = c(8,
  12), ThresholdHalfLife1 = 3, ThresholdHalfLife2 = 12, save = TRUE,
  outputPrefix = "BridgeR", normalization = "default", method = "default")

Arguments

inputFile

The vector of tab-delimited matrix file.

inforColumn

The number of information columns.

group

The vector of group names.

hour

The vector of time course about BRIC-seq experiment.

RPKMcutoff

Cutoff value of RPKM at 0hr.

cutoffBelow

Cutoff value of RPKM at all time points.

YMin

Y-axis min.

YMax

Y-axis max.

downsamplingFig

the factor for downsampling.

makeFig

Whether to save the figure of normalization factor.

cutoffQuantile

cutoff value of quantile.#' @param save Whether to save the output matrix file.

inforHKGenesRow

The column number of house-keeping gene information.

HKGenes

The vector of house-keeping genes.

CutoffTimePointNumber

The number of minimum time points for calc.

R2_criteria

The cutoff of R2 for R2 selection.

TimePointRemoval1

The candicate_1 of time point removal.

TimePointRemoval2

The candicate_2 of time point removal.

ThresholdHalfLife1

The cutoff of TimePointRemoval1.

ThresholdHalfLife2

The cutoff of TimePointRemoval2.

save

Whether to save the output matrix file.

outputPrefix

The prefix for the name of the output.

normalization

select "default" (percentile method) or "house_keeping_genes"

method

select "default" (R2 selection/1st-order) or "3models".

Value

data.table object including RNA half-life, R2 and the selected fitting model.

Examples

halflife_table <- BridgeRCore(RNA_halflife_comparison[1:30,],
                              save = FALSE)
halflife_table <- BridgeRCore(RNA_halflife_comparison_HK[177:206],
                              save = FALSE,
                              normalization = "house_keeping_genes",
                              method = "3models")

BRIC-seq Dataset checker

Description

BridgeRDatasetChecker returns several BRIC-seq dataset information. This function is used for checking your BRIC-seq dataset quality.

Usage

BridgeRDatasetChecker(inputFile, group = c("Control", "Knockdown"),
  hour = c(0, 1, 2, 4, 8, 12), inforColumn = 4, percentile = c(0.99, 0.95,
  0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05), save = T,
  outputPrefix = "BridgeR_2_raw")

Arguments

inputFile

Input matrix object.

group

The vector of group names.

hour

The vector of time course about BRIC-seq experiment.

inforColumn

The number of information columns.

percentile

Percentile numbers.

save

Whether to save the output fig file.

outputPrefix

The prefix for the name of the output.

Value

list object about ggplot2 fig data.

Examples

library(data.table)
normalized_table <- data.table(gr_id = c(8, 9, 14),
                               symbol = c("AAAS", "AACS", "AADAT"),
                               accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                               locus = c("chr12", "chr12", "chr4"),
                               CTRL_1_0h = c(1.00, 1.00, 1.00),
                               CTRL_1_1h = c(1.00, 0.86, 0.96),
                               CTRL_1_2h = c(1.00, 0.96, 0.88),
                               CTRL_1_4h = c(1.00, 0.74, 0.85),
                               CTRL_1_8h = c(1.00, 0.86, 0.68),
                               CTRL_1_12h = c(1.01, 0.65, 0.60),
                               gr_id = c(8, 9, 14),
                               symbol = c("AAAS", "AACS", "AADAT"),
                               accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                               locus = c("chr12", "chr12", "chr4"),
                               KD_1_0h = c(1.00, 1.00, 1.00),
                               KD_1_1h = c(1.01, 0.73, 0.71),
                               KD_1_2h = c(1.01, 0.77, 0.69),
                               KD_1_4h = c(1.01, 0.72, 0.67),
                               KD_1_8h = c(1.01, 0.64, 0.38),
                               KD_1_12h = c(1.00, 0.89, 0.63))
group <- c("Control", "Knockdown")
hour <- c(0, 1, 2, 4, 8, 12)
fig_list_norm <- BridgeRDatasetChecker(inputFile = normalized_table,
                                       save = FALSE)

Calculate relative RPKM expression from data.table format.

Description

BridgeRDataSetFromMatrix calculates the relative RPKM values compared with 0hr, importing data.table format.

Usage

BridgeRDataSetFromMatrix(inputFile, group = c("Control", "Knockdown"),
  hour = c(0, 1, 2, 4, 8, 12), cutoff = 0.1, cutoffBelow = 0.1,
  inforColumn = 4, save = T, outputPrefix = "BridgeR_1")

Arguments

inputFile

The vector of tab-delimited matrix file.

group

The vector of group names.

hour

The vector of time course about BRIC-seq experiment.

cutoff

Cutoff value of RPKM at 0hr.

cutoffBelow

Cutoff value of RPKM at all time points.

inforColumn

The number of information columns.

save

Whether to save the output matrix file.

outputPrefix

The prefix for the name of the output.

Value

data.table object about relative RPKM values.

Examples

library(data.table)
rpkm_matrix <- data.table(gr_id = c(8, 9, 14),
                          symbol = c("AAAS", "AACS", "AADAT"),
                          accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                          locus = c("chr12", "chr12", "chr4"),
                          CTRL_1_0h = c(41, 5, 5),
                          CTRL_1_1h = c(48, 7, 6),
                          CTRL_1_2h = c(56, 10, 6),
                          CTRL_1_4h = c(87, 12, 10),
                          CTRL_1_8h = c(124, 20, 11),
                          CTRL_1_12h = c(185, 22, 15),
                          gr_id = c(8, 9, 14),
                          symbol = c("AAAS", "AACS", "AADAT"),
                          accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                          locus = c("chr12", "chr12", "chr4"),
                          KD_1_0h = c(21, 10, 3),
                          KD_1_1h = c(33, 11, 3),
                          KD_1_2h = c(42, 15, 4),
                          KD_1_4h = c(60, 20, 5),
                          KD_1_8h = c(65, 37, 6),
                          KD_1_12h = c(70, 42, 6))
group <- c("Control", "Knockdown")
hour <- c(0, 1, 2, 4, 8, 12)
test_table <- BridgeRDataSetFromMatrix(inputFile = rpkm_matrix,
                                       group = group,
                                       hour = hour,
                                       cutoff = 0.1,
                                       inforColumn = 4,
                                       save = FALSE)

Calculate relative RPKM expression from raw data.

Description

BridgeRDataSetFromRaw calculates the relative RPKM values compared with 0hr, importing tab-delimited txt file.

Usage

BridgeRDataSetFromRaw(inputFile, group = c("Control", "Knockdown"),
  hour = c(0, 1, 2, 4, 8, 12), cutoff = 0.1, cutoffBelow = 0.1,
  inforColumn = 4, save = T, outputPrefix = "BridgeR_1")

Arguments

inputFile

The vector of tab-delimited matrix file.

group

The vector of group names.

hour

The vector of time course about BRIC-seq experiment.

cutoff

Cutoff value of RPKM at 0hr.

cutoffBelow

Cutoff value of RPKM at all time points.

inforColumn

The number of information columns.

save

Whether to save the output matrix file.

outputPrefix

The prefix for the name of the output.

Value

data.table object about relative RPKM values.


Shinyapp reporting for drawing RNA decay curve.

Description

BridgeReport returns a shinyapp object to draw RNA decay curve. You can easily check RNA half-life and RNA decay fitting curve on your web browser.

Usage

BridgeReport(inputFile, group = c("Control", "Knockdown"), hour = c(0, 1, 2,
  4, 8, 12), comparisonFile = c("Control", "Knockdown"),
  searchRowName = "symbol", inforColumn = 4, color = c("black", "red"),
  TimePointRemoval1 = c(1, 2), TimePointRemoval2 = c(8, 12))

Arguments

inputFile

The vector of tab-delimited matrix file.

group

The vector of group names.

hour

The vector of time course about BRIC-seq experiment.

comparisonFile

The vector of group names.

searchRowName

Row name for searching.

inforColumn

The number of information columns.

color

color of line graph for two decay curve.

TimePointRemoval1

The candicate_1 of time point removal.

TimePointRemoval2

The candicate_2 of time point removal.

Value

shiny.appobj object for searching and showing RNA decay curve for each gene.

Examples

library(data.table)
normalized_rpkm_matrix <- data.table(gr_id = c(8, 9, 14),
                                     symbol = c("AAAS", "AACS", "AADAT"),
                                     accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                                     locus = c("chr12", "chr12", "chr4"),
                                     CTRL_1_0h = c(1.00, 1.00, 1.00),
                                     CTRL_1_1h = c(1.00, 0.86, 0.96),
                                     CTRL_1_2h = c(1.00, 0.96, 0.88),
                                     CTRL_1_4h = c(1.00, 0.74, 0.85),
                                     CTRL_1_8h = c(1.00, 0.86, 0.68),
                                     CTRL_1_12h = c(1.01, 0.65, 0.60),
                                     gr_id = c(8, 9, 14),
                                     symbol = c("AAAS", "AACS", "AADAT"),
                                     accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                                     locus = c("chr12", "chr12", "chr4"),
                                     KD_1_0h = c(1.00, 1.00, 1.00),
                                     KD_1_1h = c(1.01, 0.73, 0.71),
                                     KD_1_2h = c(1.01, 0.77, 0.69),
                                     KD_1_4h = c(1.01, 0.72, 0.67),
                                     KD_1_8h = c(1.01, 0.64, 0.38),
                                     KD_1_12h = c(1.00, 0.89, 0.63))
group <- c("Control", "Knockdown")
hour <- c(0, 1, 2, 4, 8, 12)
halflife_table <- BridgeRHalfLifeCalcR2Select(normalized_rpkm_matrix,
                                              group = group,
                                              hour = hour,
                                              save = FALSE)
pvalue_table <- BridgeRPvalueEvaluation(halflife_table,
                                        save = FALSE)
shiny_test <- BridgeReport(pvalue_table)

RNA half-life Grubbs test.

Description

BridgeRGrubbsTest calculates the p-value for each gene using grubbs test. The estimation is based on the standard deviation of RNA half-lives in control conditions.

Usage

BridgeRGrubbsTest(controlFile, compFile, hour = c(0, 1, 2, 4, 8, 12),
  controlGroup = c("CTRL_PUM1", "CTRL_PUM2", "CTRL_DKD"), inforColumn = 4,
  compIndex = 2, save = T, outputPrefix = "BridgeR_8")

Arguments

controlFile

The dataframe of halflife table.

compFile

The dataframe of RPKM table.

hour

The vector of time course about BRIC-seq experiment.

controlGroup

The vector of group names.

inforColumn

The number of information columns.

compIndex

The number of information columns.

save

Whether to save the output matrix file.

outputPrefix

The prefix for the name of the output.

Value

data.table object about Grabbs test result.

Examples

group <- c("Control", "Knockdown")
hour <- c(0, 1, 2, 4, 8, 12)
half_sd_table <- CalcHalflifeDeviation(halflife_table,
                                       RNA_halflife_grubbs_test,
                                       group = c("CTRL_1",
                                                 "CTRL_2",
                                                 "CTRL_3"),
                                       save = FALSE)
grubbs_table <- BridgeRGrubbsTest(half_sd_table,
                                  halflife_table,
                                  compIndex = 4,
                                  controlGroup = c("CTRL_1",
                                                   "CTRL_2",
                                                   "CTRL_3"),
                                  save = FALSE)

Calculate RNA half-life for each gene using 3model method.

Description

BridgeRHalfLifeCalc3models calculates RNA half-life for each gene using 3 models methods (older version).

Usage

BridgeRHalfLifeCalc3models(inputFile, group = c("Control", "Knockdown"),
  hour = c(0, 1, 2, 4, 8, 12), inforColumn = 4, CutoffTimePointNumber = 4,
  save = T, outputPrefix = "BridgeR_5")

Arguments

inputFile

The vector of tab-delimited matrix file.

group

The vector of group names.

hour

The vector of time course about BRIC-seq experiment.

inforColumn

The number of information columns.

CutoffTimePointNumber

The number of minimum time points for calc.

save

Whether to save the output matrix file.

outputPrefix

The prefix for the name of the output.

Value

data.table object about RNA half-life, R2 and fitting model.

Examples

library(data.table)
normalized_rpkm_matrix <- data.table(gr_id = c(8, 9, 14),
                                     symbol = c("AAAS", "AACS", "AADAT"),
                                     accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                                     locus = c("chr12", "chr12", "chr4"),
                                     CTRL_1_0h = c(1.00, 1.00, 1.00),
                                     CTRL_1_1h = c(1.00, 0.86, 0.96),
                                     CTRL_1_2h = c(1.00, 0.96, 0.88),
                                     CTRL_1_4h = c(1.00, 0.74, 0.85),
                                     CTRL_1_8h = c(1.00, 0.86, 0.68),
                                     CTRL_1_12h = c(1.01, 0.65, 0.60),
                                     gr_id = c(8, 9, 14),
                                     symbol = c("AAAS", "AACS", "AADAT"),
                                     accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                                     locus = c("chr12", "chr12", "chr4"),
                                     KD_1_0h = c(1.00, 1.00, 1.00),
                                     KD_1_1h = c(1.01, 0.73, 0.71),
                                     KD_1_2h = c(1.01, 0.77, 0.69),
                                     KD_1_4h = c(1.01, 0.72, 0.67),
                                     KD_1_8h = c(1.01, 0.64, 0.38),
                                     KD_1_12h = c(1.00, 0.89, 0.63))
group <- c("Control", "Knockdown")
hour <- c(0, 1, 2, 4, 8, 12)
halflife_table <- BridgeRHalfLifeCalc3models(normalized_rpkm_matrix,
                                             group = group,
                                             hour = hour,
                                             save = FALSE)

Calculate RNA half-life for each gene using R2 selection method.

Description

BridgeRHalfLifeCalcR2Select calculates RNA half-life for each gene using R2 selection method (default version).

Usage

BridgeRHalfLifeCalcR2Select(inputFile, group = c("Control", "Knockdown"),
  hour = c(0, 1, 2, 4, 8, 12), inforColumn = 4, CutoffTimePointNumber = 4,
  R2_criteria = 0.9, TimePointRemoval1 = c(1, 2), TimePointRemoval2 = c(8,
  12), ThresholdHalfLife1 = 3, ThresholdHalfLife2 = 12, save = T,
  outputPrefix = "BridgeR_5")

Arguments

inputFile

The vector of tab-delimited matrix file.

group

The vector of group names.

hour

The vector of time course about BRIC-seq experiment.

inforColumn

The number of information columns.

CutoffTimePointNumber

The number of minimum time points for calc.

R2_criteria

The cutoff of R2 for R2 selection.

TimePointRemoval1

The candicate_1 of time point removal.

TimePointRemoval2

The candicate_2 of time point removal.

ThresholdHalfLife1

The cutoff of TimePointRemoval1.

ThresholdHalfLife2

The cutoff of TimePointRemoval2.

save

Whether to save the output matrix file.

outputPrefix

The prefix for the name of the output.

Value

data.table object about RNA half-life, R2 and fitting model.

Examples

library(data.table)
normalized_rpkm_matrix <- data.table(gr_id = c(8, 9, 14),
                                     symbol = c("AAAS", "AACS", "AADAT"),
                                     accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                                     locus = c("chr12", "chr12", "chr4"),
                                     CTRL_1_0h = c(1.00, 1.00, 1.00),
                                     CTRL_1_1h = c(1.00, 0.86, 0.96),
                                     CTRL_1_2h = c(1.00, 0.96, 0.88),
                                     CTRL_1_4h = c(1.00, 0.74, 0.85),
                                     CTRL_1_8h = c(1.00, 0.86, 0.68),
                                     CTRL_1_12h = c(1.01, 0.65, 0.60),
                                     gr_id = c(8, 9, 14),
                                     symbol = c("AAAS", "AACS", "AADAT"),
                                     accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                                     locus = c("chr12", "chr12", "chr4"),
                                     KD_1_0h = c(1.00, 1.00, 1.00),
                                     KD_1_1h = c(1.01, 0.73, 0.71),
                                     KD_1_2h = c(1.01, 0.77, 0.69),
                                     KD_1_4h = c(1.01, 0.72, 0.67),
                                     KD_1_8h = c(1.01, 0.64, 0.38),
                                     KD_1_12h = c(1.00, 0.89, 0.63))
group <- c("Control", "Knockdown")
hour <- c(0, 1, 2, 4, 8, 12)
halflife_table <- BridgeRHalfLifeCalcR2Select(normalized_rpkm_matrix,
                                              group = group,
                                              hour = hour,
                                              save = FALSE)

Calculate the normalized RPKM for BRIC-seq dataset.

Description

BridgeRNormalization calculates the normalized RPKM values.

Usage

BridgeRNormalization(inputFile, normFactorFile, group = c("Control",
  "Knockdown"), hour = c(0, 1, 2, 4, 8, 12), inforColumn = 4, save = T,
  outputPrefix = "BridgeR_4")

Arguments

inputFile

The vector of tab-delimited matrix file.

normFactorFile

The vector of tab-delimited normalization factor file.

group

The vector of group names.

hour

The vector of time course about BRIC-seq experiment.

inforColumn

The number of information columns.

save

Whether to save the output matrix file.

outputPrefix

The prefix for the name of the output.

Value

data.table object about normalized RPKM values.

Examples

library(data.table)
rpkm_matrix <- data.table(gr_id = c(8, 9, 14),
                          symbol = c("AAAS", "AACS", "AADAT"),
                          accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                          locus = c("chr12", "chr12", "chr4"),
                          CTRL_1_0h = c(41, 5, 5),
                          CTRL_1_1h = c(48, 7, 6),
                          CTRL_1_2h = c(56, 10, 6),
                          CTRL_1_4h = c(87, 12, 10),
                          CTRL_1_8h = c(124, 20, 11),
                          CTRL_1_12h = c(185, 22, 15),
                          gr_id = c(8, 9, 14),
                          symbol = c("AAAS", "AACS", "AADAT"),
                          accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                          locus = c("chr12", "chr12", "chr4"),
                          KD_1_0h = c(21, 10, 3),
                          KD_1_1h = c(33, 11, 3),
                          KD_1_2h = c(42, 15, 4),
                          KD_1_4h = c(60, 20, 5),
                          KD_1_8h = c(65, 37, 6),
                          KD_1_12h = c(70, 42, 6))
group <- c("Control", "Knockdown")
hour <- c(0, 1, 2, 4, 8, 12)
rpkm_list <- BridgeRDataSetFromMatrix(inputFile = rpkm_matrix,
                                      group = group,
                                      hour = hour,
                                      cutoff = 0.1,
                                      inforColumn = 4,
                                      save = FALSE)
raw_table <- rpkm_list[[1]]
test_table <- rpkm_list[[2]]
factor_table <- BridgeRNormalizationFactors(test_table,
                                            save = FALSE)
normalized_table <- BridgeRNormalization(test_table,
                                         factor_table,
                                         save = FALSE)

Calculate normalization factors for BRIC-seq datasets.

Description

BridgeRNormalizationFactors calculates the normalization factors for BRIC-seq datasets.

Usage

BridgeRNormalizationFactors(inputFile, group = c("Control", "Knockdown"),
  hour = c(0, 1, 2, 4, 8, 12), inforColumn = 4, save = T, YMin = -2,
  YMax = 2, downsamplingFig = 0.2, makeFig = FALSE,
  cutoffQuantile = 0.975, figOutputPrefix = "BridgeR_3_fig",
  factorOutputPrefix = "BridgeR_3")

Arguments

inputFile

The vector of tab-delimited matrix file.

group

The vector of group names.

hour

The vector of time course about BRIC-seq experiment.

inforColumn

The number of information columns.

save

Whether to save the output matrix file.

YMin

Y-axis min.

YMax

Y-axis max.

downsamplingFig

the factor for downsampling.

makeFig

Whether to save the figure of normalization factor.

cutoffQuantile

cutoff value of quantile.

figOutputPrefix

The prefix for the name of figure output.

factorOutputPrefix

The prefix for the name of factor output.

Value

data.table object about normalization factors calculated by quantile method.

Examples

library(data.table)
rpkm_matrix <- data.table(gr_id = c(8, 9, 14),
                          symbol = c("AAAS", "AACS", "AADAT"),
                          accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                          locus = c("chr12", "chr12", "chr4"),
                          CTRL_1_0h = c(41, 5, 5),
                          CTRL_1_1h = c(48, 7, 6),
                          CTRL_1_2h = c(56, 10, 6),
                          CTRL_1_4h = c(87, 12, 10),
                          CTRL_1_8h = c(124, 20, 11),
                          CTRL_1_12h = c(185, 22, 15),
                          gr_id = c(8, 9, 14),
                          symbol = c("AAAS", "AACS", "AADAT"),
                          accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                          locus = c("chr12", "chr12", "chr4"),
                          KD_1_0h = c(21, 10, 3),
                          KD_1_1h = c(33, 11, 3),
                          KD_1_2h = c(42, 15, 4),
                          KD_1_4h = c(60, 20, 5),
                          KD_1_8h = c(65, 37, 6),
                          KD_1_12h = c(70, 42, 6))
group <- c("Control", "Knockdown")
hour <- c(0, 1, 2, 4, 8, 12)
rpkm_list <- BridgeRDataSetFromMatrix(inputFile = rpkm_matrix,
                                      group = group,
                                      hour = hour,
                                      cutoff = 0.1,
                                      inforColumn = 4,
                                      save = FALSE)
raw_table <- rpkm_list[[1]]
test_table <- rpkm_list[[2]]
factor_table <- BridgeRNormalizationFactors(test_table,
                                            save = FALSE)

Calculate normalization factors from house-keeping genes.

Description

BridgeRNormalizationFactorsHK calculates the normalization factors from house-keeping genes.

Usage

BridgeRNormalizationFactorsHK(inputFile, group = c("Control", "Knockdown"),
  hour = c(0, 1, 2, 4, 8, 12), inforColumn = 4,
  inforHKGenesRow = "symbol", HKGenes = c("GAPDH", "PGK1", "PPIA", "ENO1",
  "ATP5B", "ALDOA"), save = T, factorOutputPrefix = "BridgeR_3")

Arguments

inputFile

The vector of tab-delimited matrix file.

group

The vector of group names.

hour

The vector of time course about BRIC-seq experiment.

inforColumn

The number of information columns.

inforHKGenesRow

The column number of house-keeping gene information.

HKGenes

The vector of house-keeping genes.

save

Whether to save the output matrix file.

factorOutputPrefix

The prefix for the name of factor output.

Value

data.table object about normalization factor calculated by house-keeping genes.

Examples

library(data.table)
rpkm_matrix <- data.table(gr_id = c(8, 9, 14),
                          symbol = c("AAAS", "AACS", "AADAT"),
                          accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                          locus = c("chr12", "chr12", "chr4"),
                          CTRL_1_0h = c(41, 5, 5),
                          CTRL_1_1h = c(48, 7, 6),
                          CTRL_1_2h = c(56, 10, 6),
                          CTRL_1_4h = c(87, 12, 10),
                          CTRL_1_8h = c(124, 20, 11),
                          CTRL_1_12h = c(185, 22, 15),
                          gr_id = c(8, 9, 14),
                          symbol = c("AAAS", "AACS", "AADAT"),
                          accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                          locus = c("chr12", "chr12", "chr4"),
                          KD_1_0h = c(21, 10, 3),
                          KD_1_1h = c(33, 11, 3),
                          KD_1_2h = c(42, 15, 4),
                          KD_1_4h = c(60, 20, 5),
                          KD_1_8h = c(65, 37, 6),
                          KD_1_12h = c(70, 42, 6))
group <- c("Control", "Knockdown")
hour <- c(0, 1, 2, 4, 8, 12)
rpkm_list <- BridgeRDataSetFromMatrix(inputFile = rpkm_matrix,
                                      group = group,
                                      hour = hour,
                                      cutoff = 0.1,
                                      inforColumn = 4,
                                      save = FALSE)
raw_table <- rpkm_list[[1]]
test_table <- rpkm_list[[2]]
factor_table <- BridgeRNormalizationFactorsHK(test_table,
                                              save = FALSE)

Calculate Fold-change of RNA half-life and p-value.

Description

BridgeRPvalueEvaluation calculates the fold-change of RNA half-life and p-value between two conditions.

Usage

BridgeRPvalueEvaluation(inputFile, group = c("Control", "Knockdown"),
  hour = c(0, 1, 2, 4, 8, 12), comparisonFile = c("Control", "Knockdown"),
  inforColumn = 4, CutoffTimePointNumber = 4, calibration = FALSE,
  save = TRUE, outputPrefix = "BridgeR_6")

Arguments

inputFile

The vector of tab-delimited matrix file.

group

The vector of group names.

hour

The vector of time course about BRIC-seq experiment.

comparisonFile

The vector of group names.

inforColumn

The number of information columns.

CutoffTimePointNumber

The number of minimum time points for calc.

calibration

Calibration of RNA half-life.

save

Whether to save the output matrix file.

outputPrefix

The prefix for the name of the output.

Value

data.table object about Fold-change of RNA half-lives, p-value.

Examples

library(data.table)
normalized_rpkm_matrix <- data.table(gr_id = c(8, 9, 14),
                                     symbol = c("AAAS", "AACS", "AADAT"),
                                     accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                                     locus = c("chr12", "chr12", "chr4"),
                                     CTRL_1_0h = c(1.00, 1.00, 1.00),
                                     CTRL_1_1h = c(1.00, 0.86, 0.96),
                                     CTRL_1_2h = c(1.00, 0.96, 0.88),
                                     CTRL_1_4h = c(1.00, 0.74, 0.85),
                                     CTRL_1_8h = c(1.00, 0.86, 0.68),
                                     CTRL_1_12h = c(1.01, 0.65, 0.60),
                                     gr_id = c(8, 9, 14),
                                     symbol = c("AAAS", "AACS", "AADAT"),
                                     accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                                     locus = c("chr12", "chr12", "chr4"),
                                     KD_1_0h = c(1.00, 1.00, 1.00),
                                     KD_1_1h = c(1.01, 0.73, 0.71),
                                     KD_1_2h = c(1.01, 0.77, 0.69),
                                     KD_1_4h = c(1.01, 0.72, 0.67),
                                     KD_1_8h = c(1.01, 0.64, 0.38),
                                     KD_1_12h = c(1.00, 0.89, 0.63))
group <- c("Control", "Knockdown")
hour <- c(0, 1, 2, 4, 8, 12)
halflife_table <- BridgeRHalfLifeCalcR2Select(normalized_rpkm_matrix,
                                              group = group,
                                              hour = hour,
                                              save = FALSE)
pvalue_table <- BridgeRPvalueEvaluation(halflife_table,
                                        group = group,
                                        hour = hour,
                                        save = FALSE)

BRIC-seq result checker

Description

BridgeRResultChecker returns several BRIC-seq result information. This function is used for checking the distribution of genome-wide RNA half-lives.

Usage

BridgeRResultChecker(inputFile, group = c("Control", "Knockdown"),
  hour = c(0, 1, 2, 4, 8, 12), inforColumn = 4, save = T,
  outputPrefix = "BridgeR_9")

Arguments

inputFile

The vector of tab-delimited matrix file.

group

The vector of group names.

hour

The vector of time course about BRIC-seq experiment.

inforColumn

The number of information columns.

save

Whether to save the output fig file.

outputPrefix

The prefix for the name of the output.

Value

list object about ggplot2 fig data.

Examples

library(data.table)
normalized_table <- data.table(gr_id = c(8, 9, 14),
                               symbol = c("AAAS", "AACS", "AADAT"),
                               accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                               locus = c("chr12", "chr12", "chr4"),
                               CTRL_1_0h = c(1.00, 1.00, 1.00),
                               CTRL_1_1h = c(1.00, 0.86, 0.96),
                               CTRL_1_2h = c(1.00, 0.96, 0.88),
                               CTRL_1_4h = c(1.00, 0.74, 0.85),
                               CTRL_1_8h = c(1.00, 0.86, 0.68),
                               CTRL_1_12h = c(1.01, 0.65, 0.60),
                               gr_id = c(8, 9, 14),
                               symbol = c("AAAS", "AACS", "AADAT"),
                               accession_id = c("NM_015665", "NM_023928", "NM_182662"),
                               locus = c("chr12", "chr12", "chr4"),
                               KD_1_0h = c(1.00, 1.00, 1.00),
                               KD_1_1h = c(1.01, 0.73, 0.71),
                               KD_1_2h = c(1.01, 0.77, 0.69),
                               KD_1_4h = c(1.01, 0.72, 0.67),
                               KD_1_8h = c(1.01, 0.64, 0.38),
                               KD_1_12h = c(1.00, 0.89, 0.63))
group <- c("Control", "Knockdown")
hour <- c(0, 1, 2, 4, 8, 12)
halflife_table <- BridgeRHalfLifeCalcR2Select(normalized_table,
                                              group = group,
                                              hour = hour,
                                              save = FALSE)
pvalue_table <- BridgeRPvalueEvaluation(halflife_table,
                                        group = group,
                                        hour = hour,
                                        save = FALSE)
result_fig <- BridgeRResultChecker(pvalue_table,
                                   save = FALSE)

Calculate RNA half-life SD.

Description

BridgeRHalfLifeCalcR2Select calculates RPKM SD and RNA half-life SD for each gene.

Usage

CalcHalflifeDeviation(inputFile, rawFile, group = c("CTRL_PUM1", "CTRL_PUM2",
  "CTRL_DKD"), hour = c(0, 1, 2, 4, 8, 12), save = T, figSave = F,
  inforColumn = 4, outputPrefix = "BridgeR_7")

Arguments

inputFile

The dataframe of halflife table.

rawFile

The dataframe of RPKM table.

group

The vector of group names.

hour

The vector of time course about BRIC-seq experiment.

save

Whether to save the output matrix file.

figSave

Whether to save the output fig file.

inforColumn

The number of information columns.

outputPrefix

The prefix for the name of the output.

Value

data.table object about RNA half-life SD.

Examples

group <- c("Control", "Knockdown")
hour <- c(0, 1, 2, 4, 8, 12)
half_sd_table <- CalcHalflifeDeviation(halflife_table,
                                       RNA_halflife_grubbs_test,
                                       group = c("CTRL_1",
                                                 "CTRL_2",
                                                 "CTRL_3"),
                                       save = FALSE)

BRIC-seq result dataset for p-value estimation using grubbs test

Description

A dataset containing the RPKM for each time point, information column, RNA half-life, R2 and fitting model about 200 genes. The variables are as follows:

Usage

halflife_table

Format

A data frame with 200 rows and 52 variables:

gr_id

Group id

symbol

Gene symbol

accession_id

Gene accession id (RefSeq)

locus

Genome locus

T00_1

RPKM value at 0h in control condition

T01_1

RPKM value at 1h in control condition

T02_1

RPKM value at 2h in control condition

T04_1

RPKM value at 4h in control condition

T08_1

RPKM value at 8h in control condition

T12_1

RPKM value at 12h in control condition

Model

RNA decay fitting model

R2

R2 for fitting curve

half_life

RNA half-life

gr_id

Group id

symbol

Gene symbol

accession_id

Gene accession id (RefSeq)

locus

Genome locus

T00_2

RPKM value at 0h in control condition

T01_2

RPKM value at 1h in control condition

T02_2

RPKM value at 2h in control condition

T04_2

RPKM value at 4h in control condition

T08_2

RPKM value at 8h in control condition

T12_2

RPKM value at 12h in control condition

Model

RNA decay fitting model

R2

R2 for fitting curve

half_life

RNA half-life

gr_id

Group id

symbol

Gene symbol

accession_id

Gene accession id (RefSeq)

locus

Genome locus

T00_3

RPKM value at 0h in control condition

T01_3

RPKM value at 1h in control condition

T02_3

RPKM value at 2h in control condition

T04_3

RPKM value at 4h in control condition

T08_3

RPKM value at 8h in control condition

T12_3

RPKM value at 12h in control condition

Model

RNA decay fitting model

R2

R2 for fitting curve

half_life

RNA half-life

gr_id

Group id

symbol

Gene symbol

accession_id

Gene accession id (RefSeq)

locus

Genome locus

T00_4

RPKM value at 0h in knockdown condition

T01_4

RPKM value at 1h in knockdown condition

T02_4

RPKM value at 2h in knockdown condition

T04_4

RPKM value at 4h in knockdown condition

T08_4

RPKM value at 8h in knockdown condition

T12_4

RPKM value at 12h in knockdown condition

Model

RNA decay fitting model

R2

R2 for fitting curve

half_life

RNA half-life


test BRIC-seq dataset for RNA half-life comparison

Description

A dataset containing the RPKM for each time point and information column about 200 genes. The variables are as follows:

Usage

RNA_halflife_comparison

Format

A data frame with 200 rows and 20 variables:

gr_id

Group id

symbol

Gene symbol

accession_id

Gene accession id (RefSeq)

locus

Genome locus

CTRL_1_0h

RPKM value at 0h in control condition

CTRL_1_1h

RPKM value at 1h in control condition

CTRL_1_2h

RPKM value at 2h in control condition

CTRL_1_4h

RPKM value at 4h in control condition

CTRL_1_8h

RPKM value at 8h in control condition

CTRL_1_12h

RPKM value at 12h in control condition

gr_id

Group id

symbol

Gene symbol

accession_id

Gene accession id (RefSeq)

locus

Genome locus

KD_1_0h

RPKM value at 0h in knockdown condition

KD_1_1h

RPKM value at 1h in knockdown condition

KD_1_2h

RPKM value at 2h in knockdown condition

KD_1_4h

RPKM value at 4h in knockdown condition

KD_1_8h

RPKM value at 8h in knockdown condition

KD_1_12h

RPKM value at 12h in knockdown condition


test BRIC-seq dataset for RNA half-life comparison using House-keeping genes.

Description

A dataset containing the RPKM for each time point and information column about 200 genes + house-keeping genes. The variables are as follows:

Usage

RNA_halflife_comparison_HK

Format

A data frame with 200 rows and 20 variables:

gr_id

Group id

symbol

Gene symbol

accession_id

Gene accession id (RefSeq)

locus

Genome locus

CTRL_1_0h

RPKM value at 0h in control condition

CTRL_1_1h

RPKM value at 1h in control condition

CTRL_1_2h

RPKM value at 2h in control condition

CTRL_1_4h

RPKM value at 4h in control condition

CTRL_1_8h

RPKM value at 8h in control condition

CTRL_1_12h

RPKM value at 12h in control condition

gr_id

Group id

symbol

Gene symbol

accession_id

Gene accession id (RefSeq)

locus

Genome locus

KD_1_0h

RPKM value at 0h in knockdown condition

KD_1_1h

RPKM value at 1h in knockdown condition

KD_1_2h

RPKM value at 2h in knockdown condition

KD_1_4h

RPKM value at 4h in knockdown condition

KD_1_8h

RPKM value at 8h in knockdown condition

KD_1_12h

RPKM value at 12h in knockdown condition


test BRIC-seq dataset for p-value estimation using grubbs test

Description

A dataset containing the RPKM for each time point and information column about 200 genes. The variables are as follows:

Usage

RNA_halflife_grubbs_test

Format

A data frame with 200 rows and 40 variables:

gr_id

Group id

symbol

Gene symbol

accession_id

Gene accession id (RefSeq)

locus

Genome locus

CTRL_1_0h

RPKM value at 0h in control condition

CTRL_1_1h

RPKM value at 1h in control condition

CTRL_1_2h

RPKM value at 2h in control condition

CTRL_1_4h

RPKM value at 4h in control condition

CTRL_1_8h

RPKM value at 8h in control condition

CTRL_1_12h

RPKM value at 12h in control condition

gr_id

Group id

symbol

Gene symbol

accession_id

Gene accession id (RefSeq)

locus

Genome locus

CTRL_2_0h

RPKM value at 0h in control condition

CTRL_2_1h

RPKM value at 1h in control condition

CTRL_2_2h

RPKM value at 2h in control condition

CTRL_2_4h

RPKM value at 4h in control condition

CTRL_2_8h

RPKM value at 8h in control condition

CTRL_2_12h

RPKM value at 12h in control condition

gr_id

Group id

symbol

Gene symbol

accession_id

Gene accession id (RefSeq)

locus

Genome locus

CTRL_3_0h

RPKM value at 0h in control condition

CTRL_3_1h

RPKM value at 1h in control condition

CTRL_3_2h

RPKM value at 2h in control condition

CTRL_3_4h

RPKM value at 4h in control condition

CTRL_3_8h

RPKM value at 8h in control condition

CTRL_3_12h

RPKM value at 12h in control condition

gr_id

Group id

symbol

Gene symbol

accession_id

Gene accession id (RefSeq)

locus

Genome locus

KD_1_0h

RPKM value at 0h in knockdown condition

KD_1_1h

RPKM value at 1h in knockdown condition

KD_1_2h

RPKM value at 2h in knockdown condition

KD_1_4h

RPKM value at 4h in knockdown condition

KD_1_8h

RPKM value at 8h in knockdown condition

KD_1_12h

RPKM value at 12h in knockdown condition